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ABSTRACT 
 
This study focused on flow in the unsaturated or vadose zone, which forms a major hydrologic 
link between the ground surface and underlying groundwater aquifers. To properly understand its 
role in protecting groundwater from surface and near surface sources of contamination, one must 
be able to analyze quantitatively fluid flow in unsaturated soils. The difficulty is that such soils 
are ubiquitously heterogeneous, with hydraulic properties that fluctuate from point to point in a 
seemingly erratic manner. The common approach has been to delineate this variation, and 
analyze unsaturated flow in randomly heterogeneous soils, deterministically. Yet with increasing 
frequency, the popular deterministic approach is proving to be inadequate. Our project aimed at 
developing theoretical and computational methods to predict, in an optimum fashion, unsaturated 
flow in randomly heterogeneous soils under the action of uncertain forcing terms and to assess 
the corresponding prediction errors. Previously, such predictions and assessments required the 
conduct of numerous Monte Carlo simulations on a fine grid, which was computationally 
demanding and therefore seldom used in practice. An alternative is to conduct Monte Carlo 
simulations on a coarse grid, which is still computationally intensive (due to the need for many 
repetitions) and leads to a loss of accuracy due to the need to average (upscale) the flow 
equations over relatively large grid cells. Our objective was to avoid the need for either Monte 
Carlo simulation or upscaling by developing ways to render predictions and uncertainty 
assessments directly, in a computationally efficient and accurate manner. This final technical 
report describes our accomplishment in the development of two novel approaches, one based on 
the Kirchhoff transformation and the other on a Gaussian method of approximation. The report 
also describes some initial ideas about how to extend the applicability of these two approaches to 
multidimensional and transient flows in a broader class of soils than we have considered 
previously. The report cites publications based on research supported in part by this ARO grant. 
 
INTRODUCTION 
 
Our project dealt with the effect of measuring randomly varying soil hydraulic properties on 
one's ability to predict unsaturated flow subject to random sources and/or initial and boundary 
conditions. Our aim was to develop theoretical and computational methods for the optimum 
prediction of unsaturated flow (in terms of pressure head, water content, flux and velocity) in 
randomly heterogeneous soils under the action of uncertain forcing terms (boundary conditions, 
initial conditions, sources and sinks), and assessment of the associated prediction errors. In the 
past, such predictions and assessments required the conduct of numerous (hundreds or 
thousands) Monte Carlo simulations on a fine computational grid, which is computationally 
demanding and therefore seldom used in practice. An alternative is to conduct Monte Carlo 
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simulations on a coarse grid, which is still computationally intensive (due to the need for many 
repetitions) and leads to a loss of accuracy due to the need to average (upscale) the flow 
equations over relatively large grid cells. Our objective was to avoid the need for either Monte 
Carlo simulation or upscaling by developing ways to render predictions and uncertainty 
assessments directly (in a finite number of computational steps) in a computationally efficient 
and accurate manner. Whereas the Monte Carlo method requires specifying the probability 
distribution of soil parameters (which, for convenience, are typically assumed to be multivariate 
Gaussian or log-Gaussian, mostly without direct evidence), one of the two approaches we are 
pursuing (that based on the Kirchhoff transformation) is free of such distributional requirements. 
 
Our study focused on flow in the unsaturated or vadose zone. This zone forms a major 
hydrologic link between the ground surface and underlying groundwater aquifers. To properly 
understand its role in protecting groundwater from surface and near surface sources of 
contamination, one must be able to analyze quantitatively fluid flow in unsaturated soils. The 
difficulty is that such soils are ubiquitously heterogeneous, with hydraulic properties (saturated 
conductivity, porosity, parameters of constitutive functional relationships between relative 
conductivity, pressure head and saturation) that fluctuate from point to point in a seemingly 
erratic manner. This erratic spatial variability, together with random errors of measurement and 
interpretation, renders the soil parameters uncertain and the corresponding flow equations 
stochastic. In practice, the random spatial variability of soil hydraulic properties, and the 
stochastic nature of unsaturated flow variables (pressure head, saturation, flux, velocity), are 
often ignored. Instead, the common approach is to delineate the spatial variation of soil 
properties deterministically and express the unsaturated flow equations in a similar fashion. 
Another popular assumption is that flow through the vadose zone is largely vertical and one is 
justified ignoring lateral variations in soil hydraulic properties and flow variables. Yet with 
increasing frequency, such attitudes are proving to be counter productive. Consider for 
illustration, the case of leaking underground tanks at Hanford. 
 
A recent report to Congress by the US General Accounting Office (GAO/RCED-98-80, March 
1998) suggests that the common practice of ignoring lateral flow might have misled the DOE to 
believe, for many years, that the vadose zone at Hanford constitutes an effective barrier for 
contaminant migration between tank wastes and underlying groundwater. The DOE had assumed 
that wastes would move slowly, if at all, through the vadose zone, thereby obviating the need for 
detailed studies of flow conditions in the thick unsaturated zone at Hanford. The GAO report 
cites evidence that may indicate otherwise. Indeed, in December 1997 the DOE had announced 
publicly that highly radioactive wastes from previously leaking underground storage tanks had 
migrated all the way down to groundwater. Current understanding of how wastes move through 
the vadose zone to the groundwater has proven to be inadequate for key technical decisions on 
how to clean up the wastes at Hanford in an environmentally sound and cost-effective manner. 
To better understand fluid flow and contaminant transport processes in the vadose zone, one 
must recognize that unsaturated soils and rocks form part of a complex three-dimensional, 
multiphase, multiscale heterogeneous and anisotropic hydrogeologic system. This system does 
not constitute a perfect sequence of horizontal layers; if it did, flow and transport rates would be 
controlled by the least permeable layer and would therefore be correspondingly low. In reality, 
unsaturated medium properties vary spatially in a complex manner, which often allows fluids 
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and contaminants to move around low-permeability obstacles much faster than would be possible 
in the perfectly stratified case. Preferential flow through high-permeability channels and/or the 
formation of unstable fingers could further enhance the rate of contaminant migration from a 
source in the vadose zone to the water table. A panel of four vadose zone experts concluded 
(DOE/RL-97-49, April 1997) that characterization of the vadose zone at Hanford is an essential 
step toward understanding contamination of the groundwater, assessing the resulting health risks, 
and defining the concomitant groundwater monitoring program needed to verify risk 
assessments. As flow and transport in the heterogeneous vadose zone at Hanford are poorly 
understood, previous and ongoing computer modeling efforts are inadequate and based on 
unrealistic and sometimes optimistic assumptions, which render their output unreliable. 
 
A recent study of groundwater and soil cleanup by the U.S. National Academy (National 
Research Council, 1999) recognizes that the geologic and geochemical characteristics of a site 
have a major influence on the performance of subsurface cleanup systems. According to this 
study, the subsurface is usually highly heterogeneous and characterizing this variability is 
extremely difficult. This heterogeneity and difficulty in characterization complicate the design of 
subsurface cleanup systems because predicting system performance under such uncertain 
conditions is difficult. Further, many types of cleanup systems, including not only pump-and-
treat systems but also systems using in situ chemical oxidation, biodegradation, and other 
processes, require the circulation of water, aqueous solutions, or other fluids underground. The 
physical heterogeneity of the subsurface interferes with uniform delivery of fluids to 
contaminated locations. As a result, some contaminated zones will receive little or no treatment 
if a fluid is pumped in or out of the zone. Technologies for treating DNAPL source zones, and 
dissolved plumes emanating from DNAPL sources, are limited primarily by geological 
heterogeneities, which can interfere with circulation of treatment fluid and water or can limit 
access to the subsurface. Soil heterogeneity affects soil vapor extraction performance as air flows 
most easily through coarse-grained soils and very little if at all through predominantly clayey 
soils. Frequently, volatile organic compounds will accumulate preferentially on the surface of 
and within clay lenses and layers, and airflow will be minimal in the most highly contaminated 
soils. An accurate knowledge of geological heterogeneities is vital for evaluating the 
hydrogeological limits on subsurface contaminant remediation. 
 
In a January 2000 Editorial titled "It's the Heterogeneity!” the Editor of the most widely read 
groundwater journal (Wood, 2000) reminds his readers that the heterogeneity of chemical, 
biological, and flow conditions should be a major concern in any remediation scenario. In his 
view, many in the groundwater community either failed to "get" the message or were forced by 
political considerations to provide rapid, untested, site-specific active remediation technology. It 
was their lack of appreciation of heterogeneity that led them to the belief that they could 
remediate aquifers by simply pumping out and treating offending solute. "It's the heterogeneity," 
and it is the Editor's guess that the natural system is so complex that it will be many years before 
one can effectively deal with heterogeneity on societally important scales. 
 
The purpose of our work under this ARO grant was to help accelerate the process. Though the 
complex and uncertain nature of subsurface flow conditions is now widely recognized, there 
does not yet appear to be a satisfactory way to characterize and quantify them mathematically 
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and computationally. Our goal was to develop a mathematical framework, and computational 
algorithms that help materially advance the corresponding state of science and technology. We 
pursued this goal through (a) the development of stochastically-derived deterministic 
"conditional moment equations" that allow optimum unbiased prediction of flow in randomly 
heterogeneous unsaturated soils on a multiplicity of spatial scales, under the action of uncertain 
forcing terms, as well as assessment of the corresponding prediction errors, and (b) the 
development of associated analytical and computational methods of solution. Rather than 
requiring repeated Monte Carlo simulations on a fine grid, our computational methods are 
designed to yield a solution in one single simulation on a relatively coarse grid. Rather than 
working with upscaled quantities which are often difficult to justify theoretically, or compare 
with measurements, all quantities that enter into our equations are defined on a scale compatible 
with potentially available field data (their support scale).  
 
ACCOMPLISHMENTS 
 
The grant funded a doctoral student, Mr. Donghai Wang, who plans to complete his Ph.D. 
dissertation in spring 2003. The grant also provided partial funds for the Co-PI, Dr. Daniel M. 
Tartakovsky, of the Scientific Computing Group within the Theoretical Division at Los Alamos 
National Laboratory. In addition to the Principal Investigator, persons not funded by the grant in 
any major way, who however have collaborated with us, include Dr. Orna Amir and Dr. Zhiming 
Lu. The latter two have been funded primarily by a National Science Foundation grant that 
expired on January 31, 2001. Dr. Amir has completed her doctorate in December 1999 and Dr. 
Lu in May 2000. Both the PI and Dr. Tartakovsky have served as members of Dr. Amir's and Dr. 
Lu’s doctoral committees. We describe briefly the research and relevant work products 
completed by members of this team to date. 
 
Laying the Groundwork 
 
Our research was founded on two papers that have appeared in the fall of 1999. In the paper by 
Neuman et al. (1999) we lay the foundations of a new conditional moment approach for the 
solution of stochastic unsaturated flow equations with random parameters and uncertain forcing 
terms. The paper shows that the approach leads to deterministic equations for the conditional 
moments, which can be solved by standard numerical methods, thereby obviating the need for 
Monte Carlo simulations. The parameters in these equations may be local (depending on one 
point in space-time) or nonlocal (depending on two such points). As they are conditional on 
measurements, the parameters are not unique properties of the soil but vary with the underlying 
database. The conditional mean solution constitutes an optimum unbiased predictor of the 
otherwise unknown state of the system, and conditional second moments provide a measure of 
the corresponding prediction uncertainty. Since all moments are defined on the same consistent 
measurement (support) scale ω  as the data, there is no need for upscaling, though one can easily 
integrate the conditional mean solution in space-time, if one so desires. As the conditional mean 
solution is smooth relative to its random counterpart, it can in principle be resolved on a 
numerical grid which is coarser than that typically required for the Monte Carlo simulation of 
random fields. 
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The paper of Neuman et al. (1999) describes two methods for the development of conditional 
moment equations and their solution. One method is based on the Kirchhoff transformation and 
the other on a Gaussian closure approximation. The method using Kirchhoff transformation is 
described more fully in a paper by Tartakovsky et al. (1999). There we demonstrate that the 
Kirchhoff transformation fully linearizes the stochastic steady state unsaturated flow equation in 
the absence of gravity, and does the same for flow with gravity when the Gardner model, K = Ks 
exp(αψ ), applies; here K is unsaturated hydraulic conductivity, Ks is saturated hydraulic 
conductivity, α  is a positive exponent, and ψ  is (negative) pressure head. Consequently, the 
method yields exact conditional mean flow equations for both situations, as well as exact 
equations for the conditional variance-covariance of pressure head and flux. Both sets of 
equations are nonlocal (integro-differential) in that they contain parameters depending on more 
than one point in space. Both the local (depending on one point in space) and nonlocal 
parameters in our moment equations are conditional on data and therefore nonunique. The 
conditional mean solution constitutes an optimum unbiased predictor of the otherwise unknown 
state of the system, and conditional second moments provide a measure of the corresponding 
prediction uncertainty. 
 
The linear Kirchhoff-transformed stochastic flow equations yield exact conditional moment 
equations which, however, cannot be solved without a closure approximation. The closure 
approximation we use is based on perturbation analysis. As such, it is nominally limited either to 
mildly heterogeneous soils, or to strongly heterogeneous soils in which hydraulic properties have 
been measured with sufficient accuracy, at a sufficiently large number of points, to allow 
estimating them everywhere else in the soil with a relatively low degree of uncertainty. We shall 
see later that, in reality, our perturbation approach works well even in strongly heterogeneous 
soils in the absence of such conditioning. 
 
The paper of Tartakovsky et al. (1999) demonstrates rigorously that the concept of effective 
hydraulic conductivity does not generally apply to statistically averaged unsaturated flow 
equations except when they are unconditional and flow is driven solely by gravity. It points out 
that all conditional parameters and moments in our equations are smooth relative to their random 
counterpart and can therefore be resolved, in principle, on a numerical grid which is coarser than 
that typically required for the Monte Carlo simulation of random fields. The paper proceeds to 
develop analytical solutions for the Kirchhoff potential, pressure head and their variances under 
vertical infiltration, without conditioning, to second order of approximation in the standard 
deviation (first order in the variance) of natural log saturated hydraulic conductivity. It then 
compares these with Monte Carlo results obtained by solving the stochastic Richards equation 
numerically. Our second order approximations are generally far superior to zero order 
approximations, and the variance of pressure heads compares much better with Monte Carlo 
values than does the variance of Kirchhoff potentials. Both the analytical pressure head and its 
variance compare well with Monte Carlo results for natural log conductivity variances at least as 
large as 1. This accords well with theoretical analysis (presented in the paper) which shows that 
our analytical solution remains asymptotic for input variances as large as 2. 
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The Gaussian method of approximation, introduced by Neuman et al. (1999), is more general 
than the method based on Kirchhoff transformation in that it imposes fewer restrictions on the 
functional form of constitutive relationships between unsaturated hydraulic conductivity, 
pressure head and saturation. It however requires assuming that the reference pressure head is 
multivariate Gaussian (or log-Gaussian) about its conditional mean. 
 
The Kirchhoff method of solution has been developed and explored further by Drs. Lu and 
Tartakovsky. The Gaussian method has been the research focus of Dr. Amir and Mr. Wang. We 
present a brief description of their accomplishments and findings. 
 
Numerical Analysis Based on Kirchhoff Transformation 
 
In May 2000, Zhiming Lu completed his doctoral dissertation (Lu, 2000) on nonlocal finite 
element analysis of conditional steady state unsaturated flow in bounded, randomly 
heterogeneous soils using the Kirchhoff transformation. The highlights of his work are described 
in a paper by Lu et al. (2002) published earlier this year in the archival journal Water Resources 
Research. 
 
Dr. Lu’s work consists of the development, and computer implementation, of a finite element 
algorithm for the prediction of steady state unsaturated flow in the vertical plane. He considers 
flow in a bounded, randomly heterogeneous soil profile under the influence of random forcing 
terms. His aim is to predict pressure head and flux at each point in the two-dimensional vertical 
profile without resorting to Monte Carlo simulation, upscaling or linearization of the constitutive 
relationship between unsaturated hydraulic conductivity and pressure head. To achieve this, he 
represents the latter relationship through Gardner's exponential model (described earlier), 
treating its exponent α as a random constant and saturated hydraulic conductivity, Ks, as a 
spatially correlated random field. This allows him to linearize the steady state unsaturated flow 
equations by means of the Kirchhoff transformation, integrate them in probability space, and 
obtain exact integro-differential equations for the conditional mean and variance-covariance of 
transformed pressure head and flux, in the manner of Tartakovsky et al. (1999). Expansion of the 
nonlocal conditional moment equations in powers of Yσ and ασ , which represent measures of 
the standard estimation errors of saturated natural log hydraulic conductivity Y = ln Ks and β = ln 
α , respectively, leads to a set of recursive closure approximations. Zhiming solves these 
approximate moment equations by finite elements, to second-order of approximation, for 
superimposed mean uniform and divergent flow regimes.  
 
As the conditional mean quantities are generally smoother than their random counterparts, the 
recursive moment equations can be solved (in principle) on a relatively coarse grid without 
upscaling. Dr. Lu, however, uses a fine grid to compare his nonlocal finite element solution with 
conditional and unconditional Monte Carlo simulations, conducted on the same grid by standard 
finite elements. Dr. Lu’s comparison demonstrates that his direct finite element solution of the 
moment equations is highly accurate for mildly heterogeneous soils and works well for soils that 
are moderately to strongly heterogeneous. 
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Extension of Approach Based on Kirchhoff Transformation to Soils with Spatially Varying 
Exponent α  
 
Our analytical and numerical approaches based on the Kirchhoff transformation treat the 
exponent α  in the Gardner (1958) constitutive relation K = Ks exp(αψ ) as a random constant 
that does not vary in space. In a recent Journal of Hydrology article (Tartakovsky et al., 2002) we 
describe a way to relax this requirement by allowing α  to be a statistically homogeneous random 
field. Our approach utilizes the “partial mean-field” concept, according to which the random 
field ( )α x  is replaced by its spatially varying conditional ensemble mean while saturated 
hydraulic conductivity remains a random field. The Kirchhoff transformation can then be applied 
to the resulting (nonlinear) stochastic partial differential equation in a manner similar to that of 
our earlier analyses. The accuracy of this approach depends on a complex interplay between the 
statistical parameters of ( )α x  (mean, variance and correlation scale), an issue explored in the 
above paper. 
 
Analysis Based on Gaussian Approximation 
 
In December 1999 Orna Amir completed her doctoral dissertation, titled "Gaussian Analysis of 
Unsaturated Flow in Randomly Heterogeneous Porous Media" (Amir, 1999). Based on the 
assumption that pressure head ψ  is multivariate Gaussian about its conditional mean, Dr. Amir 
was able to derive governing equations for the mean and variance of ψ  without linearizing either 
the constitutive relation between unsaturated hydraulic conductivity and pressure head, or the 
governing unsaturated flow equations (so that the governing moment equations remain nonlinear, 
as is the underlying stochastic Richards’ equation). Contrary to all other known solutions of the 
stochastic unsaturated flow problem, our Gaussian approach places no obvious restrictions on the 
variance of the corresponding constitutive parameters. This is evident from Dr. Amir’s 
computational results. 
 
Dr. Amir illustrated the application and effectiveness of the Gaussian closure approximation by 
developing a closed system of coupled nonlinear, ordinary differential equations for the first and 
second moments of pressure head under one-dimensional steady state unsaturated flow through a 
randomly stratified soil. Her equations are written (by choice, not necessity) for unsaturated 
hydraulic conductivity that varies exponentially with pressure head, where now the exponent α  
is not a random constant (as it was in the case of the Kirchhoff transformation) but a spatially 
varying random field. Rather than treating the soil as a continuum, Dr. Amir found it helpful to 
represent it by a discrete assembly of layers, each of which has uniform but random properties Y 
= ln Ks and β  = ln α , which however are auto- and cross-correlated between the layers. 
 
Dr. Amir solved her one-dimensional, steady state nonlinear moment equations numerically and 
compared the results with those obtained by Monte Carlo simulation, based on an existing 
analytical solution of Richards' equation for this case. The comparison shows excellent 
agreement between the two sets of results over a remarkably broad range of constitutive 
parameters. A paper that describes this part of Dr. Amir’s work has appeared in the journal 
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Transport in Porous Media (Amir and Neuman, 2001a). An earlier, less complete version has 
appeared in a book published as a Geological Society of America Special Paper (Amir and 
Neuman, 2000). 
 
Extension of Gaussian Approach to Transient Flow 
 
In her dissertation, Dr. Amir extended her one-dimensional Gaussian solution to the case of 
transient flow with an exponential constitutive relationship between saturation and pressure head. 
Upon comparing her mean solution with that obtained by the Monte Carlo method (this time 
through numerical solution of the one-dimensional Richards' equation), Dr. Amir found that the 
two agree very well for a wide range of constitutive parameters. However, she found a less 
satisfactory agreement between the variances and covariances of pressure head obtained by the 
two methods. 
 
Though Dr. Amir is now in Israel, she continues to collaborate with us on this project. During the 
last year, Dr. Amir was able to improve substantially the quality of pressure head variance and 
covariance assessments based on her one-dimensional Gaussian approach. A paper summarizing 
her most recent work on this topic has been submitted for publication in the journal Transport in 
Porous Media (Amir and Neuman, 2002b). 
 
Extension of Gaussian Approach to Multidimensional Flow 
 
To lay the groundwork for a multi-dimensional application of our Gaussian approach, Amir 
(1999) proposed solving steady state flow in a two-dimensional domain by finite elements by 
representing the soil as a checkerboard of square elements, each having uniform random 
constitutive properties Y = ln Ks and β  = ln α , which however are auto- and cross-correlated 
between the elements. The computational implementation of this finite element algorithm has 
become the domain of a doctoral student supported by this grant, Mr. Donghai Wang. 
 
Donghai has formulated, developed and implemented a finite element algorithm based on the 
above idea. He has applied his algorithm to two-dimensional flow in a bounded vertical domain 
under coupled mean uniform and convergent flows, and compared his results with those of 
standard Monte Carlo simulations. His excellent results are summarized in a paper presented at 
(and included in the Proceedings of) the Fourteenth  International Conference on Computational 
Methods in Water Resources that took place in Delft, The Netherlands, in June 2002 (Wang et 
al., 2002). Mr. Wang is presently completing his doctoral dissertation, which he plans to defend 
in spring 2003. We plan to prepare one or more journal articles based on his dissertation in 
spring and summer 2003. 
 
Following is a brief technical description of Mr. Wang’s work. 
 
Consider steady state unsaturated flow in a bounded domain Ω governed by mass continuity and 
Darcy’s law,  
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( ) ( ) ( ) ( ) ( )30 ,f K xψ ψ−∇ ⋅ + = = − ∇ +q q
( (( ( ( ( ( ( (x x x x     (1) 

 
subject to boundary conditions 
 
( ) ( )
( ) ( ) ( )

                      on 

           on   
D

NQ

ψ = Ψ Γ

− ⋅ = Γq n

(( ( (

( ( (
x x

x x x
  (2) 

 
Here ∇

(
 is gradient operator with respect to the spatial position vector x( , q is flux, f is a source 

term, K is a spatially correlated random hydraulic conductivity field, ψ(  is pressure head, 3x(  is 
the vertical, ΓD is Dirichlet boundary, ΓN is Neumann boundary, and n is a unit outer normal to 
the boundary. The forcing terms f, Ψ

(
, Q are random and mutually uncorrelated. All quantities 

are defined, and measurable, on a bulk support volume ω  that is small compared to the flow 
domainΩ . Flow takes place under strictly unsaturated conditions such that ψ(  < 0. The random 
nature of K and the forcing terms render (1) – (2) stochastic. 
 
We represent hydraulic conductivity using the Gardner (1958) constitutive model  
 
( ) ( ) ( ) ( ) ( ) ( )      x x

s r rK K K K eα ψψ ψ ψ= =x, x x, x,        (3) 
 
where sK  is saturated hydraulic conductivity, Kr is relative conductivity, and α is a positive 
exponent. The flux in (1) and (2) then becomes  
 
( ) ( )3sK e xαψ ψ= − ∇ +q

( ( (x  (4) 
 
We treat ( ) ( )ln sY K=x x  as a correlated Gaussian random field and lnA = − α  as a normally 
distributed random variable. Using (4), we rewrite (1) - (2) in dimensionless form as 
 

( ) ( ) ( ) 3
10 sK

e xψ αψ α
α α

  = ∇⋅ ∇ +   
  

xx
x  (5) 

 

( ) ( )
( ) ( ) ( ) ( ) ( )3

                                                       on 

   on 

D

s
N

K
e x Qψ

ψ

αψ α
α

= Ψ Γ

− ∇  +  ⋅ = Γ  nx

x x

x
x x x

 (6) 

 
where α  is ensemble mean of α , ∇  is gradient operator with respect to dimensionless x, and 
ψ and x are dimensionless variables defined as 
 

/                  / ψ ψ α α= =( (x x  (7) 
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Considering that
2 / 2AAe σα − +=  where A  is the mean of A and 2

Aσ  is its variance, we can rewrite 
(5) – (6) as  
 

( )2 2 2/ 2 / 2 / 2
30 A A AA Y A AAe e e e e xσ σ σψ ψ− + − − +− = ∇⋅ ∇ +  

 (8) 

 

( ) ( )

( ) ( ) ( )
2 2/ 2 / 2

3

                                                               on 

       on A A

D

Y A AA
Ne e e e x Qσ σψ

ψ

ψ+ − − +−

= Ψ Γ

− ∇ + ⋅ = Γn

x x

x x
 (9) 

 
We take the flow domain to be a checkerboard of R densely spaced, nonoverlapping subdomains 

rΩ , r = 1, 2, …R, within each of which Y and A are random constants, Yr and Ar: 
 
( ) ( ){ , r}                  { , r}r r r rY Y A A= ∈Ω ∀ = ∈Ω ∀x x x x         (10) 

 
Multiplying (8) by a deterministic weight function nφ , integrating over the global domain Ω , 
rewriting as the sum of integrals over R sub-domains rΩ , and taking ensemble mean yields 
 

( )2 2 2/ 2 / 2 / 2
3

1
0 r A A Ar r r

r

R
A Y A AA

n
r

e e e e e x dσ σ σψ ψ φ− + − − +−

= Ω

= ∇⋅ ∇ + Ω∑ ∫  (11) 

Applying Green’s identity, then rewriting ψ  as ψ ψ′+  and Y as Y Y ′+ , (11) becomes 
 

( )
( )

2 2

2 2

/ 2
3

1

/ 2
3

1

0 r r A Ar r

r

r r A Ar r

r

R
Y A Y A A

n
r

R
Y A Y A A

n
r

e e e e e e x d

e e e e e e x d

σ σψ ψ

σ σψ ψ

ψ ψ φ

φ ψ ψ

+ − ′ ′ ′ ′+ − −

= Ω

+ − ′ ′ ′ ′+ − −

= Γ Ω

′= − ∇ + + ⋅∇ Ω

′+ ∇ + + ⋅ Γ

∑ ∫

∑ ∫ n
I

 (12) 

 
Treating ψ, Y and A as Gaussian and defining 
 

                  Y Ap e e A Y Aψ ψ ζ ψ′ ′ ′+ − ′ ′ ′ ′= = +  (13) 
 
allows simplifying (12) as 
 

( ) ( )2 2

3 3
1 1

0 r A r r Ar r r

r r

R R
Y A Y A

n n
r r

e p pe i d e p pe i dσ σζ ζφ φ+ − + −

= =Ω Γ Ω

= − ∇ + ⋅∇ Ω+ ∇ + ⋅ Γ∑ ∑∫ ∫ n
I

 (14) 

 
where ( )3 0,0,1 Ti = . Approximating p and ζ by  
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1 1
,     

N N
n n

m m m m
m m

p p φ ζ ζ φ
= =

= =∑ ∑  (15) 

 
where mp  and mζ are values of p and ζ at nodes m = 1, 2, … N and nφ now serve as Lagrange 
interpolation functions, then using (9), yields the Galerkin finite element scheme 
 

2 2
1

2
2

3
1 1 1 1

2
3

1 1

0 +

    

N
m mr r A r r Amr r

r D r

Ar
rr r Ar

D r N r

R N R N
Y A Y A

m m n m n m n m
r m r m

R R AY A Y Y A
n n

r r

e p e i d e p n d

e Pe i d e Q d

ζ φσ σ

σ
σ

φ φ φ φ φ φ

φ φ

=+ − + −

= = = =Ω Γ Ω

−+ − ′ ′ ′ ′Ψ +

= =Γ Ω Γ Ω

 ∑= − ∇ ⋅∇ + ⋅∇ Ω ∇ ⋅ Γ 
 

+ ⋅ Γ − Γ

∑ ∑ ∑ ∑∫ ∫

∑ ∑∫ ∫n

I

I I

 

 (16) 
where P is p at the D rΓ ΩI . Setting n = 1, 2, …N yields a system of N equations in N unknown 
values of pn. However, the equations are nonlinear due to their dependence on ζ. 
 
To derive a complementary system of equations for ζm we multiply (11) by A′  and φn, integrate 
over Ω , rewrite as a sum of integrals over rΩ , take ensemble mean, apply Green’s identity and 
account for (9) to obtain 

( )

( )

2
1

2

2
3

1 , 1 1 , 1

2

1 , 1 1

0

     

    

N
j jr r A jr

r r r

r r Ar

D r D r

R N N N
Y A

i j i j n A i i n i j i j n
r i j i i j

R N N
Y A

i j n i j A i n i
r i j i

e p d p d p e i d

e p d p d

ζ φσ

σ

ζ φ φ φ σ φ φ ζ φ φ φ

ζ φ φ φ σ φ φ

=+ −

= = = =Ω Ω Ω

+ −

= = =Γ Ω Γ Ω

 ∑= − ∇ ⋅∇ Ω − ∇ ⋅∇ Ω + ⋅∇ Ω  
 
 

+ ∇ ⋅ Γ − ∇ ⋅ Γ  
 

∑ ∑ ∑ ∑∫ ∫ ∫

∑ ∑ ∑∫ ∫n n
I I

( )
2

2
2

3
1 1

  
Ar

rr r Ar

D r N r

R S AY A A Y A
n n

r r

e P A Y A e i d e A Q d
σ

σ φ φ
−+ − ′ ′ ′ ′Ψ +

= =Γ Ω Γ Ω

′ ′ ′ ′ ′+ Ψ + ⋅ Γ − Γ∑ ∑∫ ∫n
I I

 

   (17) 
Setting n = 1, 2, …N yields a system of N equations in N unknown values of nζ . The coupled 
nonlinear equations (16) – (17) are solved simultaneously by (in our case Picard) iteration for p 
and ζ. 
 
To compute the covariance function ( ) ( ) ( ),Cψ ψ ψ′ ′≡% %x x x x  of dimensionless pressure head 
( x  and x%  being two arbitrary points in space), we first require an equation for the mixed 
moment ( ) ( ) ( )Yϕ ψ′ ′≡x x x . Multiplying (8) by Y ′  and following the same procedure as 
before yields a system of N linear equations for nodal values of ϕ, 
 

( ) ( )

( ) ( )

2

2

3 3
1 1

2 2 2 2
3 3

1

0 r r Ar

r r

r r Ar

r r

R N
Y A

m m m m n n m m m
r m

R
Y A

Y Y n n Y Y
r

e p p p e i d p p p e i d

e Y A p pe i d Y A p pe i d

σ ζ ζ

σ ζ ζ

ϕ φ φ φ φ φ φ φ φ

σ σ φ φ σ σ

+ −

= = Ω Γ Ω

+ −

= Ω Γ Ω

 
= − − ∇ + ∇ + ⋅∇ Ω+ ∇ + ∇ + ⋅ Γ  

 
 

   ′ ′ ′ ′+ − − ∇ + ⋅∇ Ω+ − ∇ + ⋅ Γ     
 

∑ ∑ ∫ ∫

∑ ∫ ∫

n

n

I

I

 

  (18) 
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Multiplying (8) by ( )ψ ψ′ ′=% %x  and following a similar procedure yields a system of N N×  

equations for ( ), ,m m m mC Cψ=% %%x x , 
 

( ) ( )

( )( ) ( )( )

2

2

3 3
1 1

3 3
1

0 r r Ar

r r

r r Ar

r r

R N
Y A

mm m m m n n m m m
r m

R
Y A

n n
r

e C p p p e i d p p p e i d

e p pe i d p pe i d

σ ζ ζ

σ ζ ζ

φ φ φ φ φ φ φ φ

ϕ η ϕ φ φ ϕ η ϕ

+ −

= = Ω Γ Ω

+ −

= Ω Γ Ω

 
= − − ∇ + ∇ + ⋅∇ Ω+ ∇ + ∇ + ⋅ Γ  

 
 

   + − ∇ − + ⋅∇ Ω+ ∇ − + ⋅ Γ     
 

∑ ∑ ∫ ∫

∑ ∫ ∫

n

n

%

I

I

% % % % % %

   

 (19) 
Computation is facilitated by the fact that (18) and (19) contain identical coefficient matrices and 
the symmetric nature of the matrix ,m mC % . 
 
Additional details about these derivations can be found in Amir (1999).  
 
The variance 2

ψσ  is obtained from the covariance ( ),C x xψ %  by setting =x x% . Finally, the mean 
solution is obtained via 
 

( )2 2 2ln / 2 / 2 / 2Y Ap ψψ σ σ σ ϕ− + + +=   (20) 
 

For illustration purposes we consider flow in a vertical plane of size 4 ×  8 (all terms being given in 
arbitrary consistent units) having impermeable side boundaries (Figure 1). A constant deterministic 
flux Qb = 0.01 is prescribed at the top and zero pressure head at the bottom. A point source of 
magnitude Qs = 1 causes the otherwise near-uniform mean flow to become locally divergent in the 
domain interior. For simplicity, Y and A are taken to be spatially and mutually uncorrelated. We 
solve the problem using our finite element Gaussian closure algorithm, and (for comparison) by 
5,000 Monte Carlo simulations using standard finite elements, on a grid of 20 × 40 square elements 
with bilinear weight and interpolation functions. 
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Figure 1. Problem definition and associated grid 

 
Figure 2 depicts contours and profiles of mean dimensionless pressure head and its variance 
obtained by the two methods for a medium having uniform but random Y and A values 
characterized by Y  = 3, 2

Yσ  = 2, A  = 0, and 2
Aσ  =0.02. The two solutions are seen to agree 

very well despite the relatively large value of 2
Yσ . 

 
Figure 3 shows how the mean and variance of Y and A vary spatially in two cases for which we 
present solutions in Figures 4 and 5. In both cases, the Gaussian Closure and Monte Carlo 
methods yield virtually identical dimensionless mean pressure head values but slightly different 
variances. Overall, we consider these results to be very good.  
 
Our solution of (16) – (17) converges in 3 to 4 iterations. This, and the fact that we need to solve 
our Gaussian closure equations only once, helps explain why our solution has taken only about 
one fourth the time required for the completion of 5,000 standard Monte Carlo simulations 

Parameters: 
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Figure 2. Contours and profiles of mean pressure head (A, B) and variance of pressure head (C, 
D) obtained by Monte Carlo (MC, solid) and Gaussian closure (GC, dash-dot) for homogeneous 

domain with <Y> = 3, 2
Yσ  = 2 and <A> = 0, 2

Aσ  = 0. 02 
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Figure 3. Variation of Y  and 2
Aσ  in cases of Figure 4 (A and B) and Figure 5 (C and D). In both 

cases 2
Yσ  ≡  1 and A  ≡  0. 
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Figure 4. Contours and profiles of dimensionless mean pressure head (A-B) and variance of 
dimensionless pressure head (C-D) obtained by Monte Carlo (MC, solid) and Gaussian closure 

(GC, dash-dot) for parameters defined in Figure 3A-B. 
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Figure 5. Contours and profiles of dimensionless mean pressure head (A-B) and variance of 
dimensionless pressure head (C-D) obtained by Monte Carlo (MC, solid) and Gaussian closure 

(GC, dash-dot) for parameters defined in Figure 3C-D. 
 
Advances in Modeling Soil Constitutive Relations 
 
A paper by Assouline and Tartakovsky (2001) on this topic has recently been published in Water 
Resources Research. It describes the development of a new two-parameter expression for 
relative hydraulic conductivity of partially saturated soils. The new expression is based on a 
premise by Assouline et al. (1998) that the probability distribution of particle volumes in natural 
soils results from a series of sequential fragmentations. These fragmentations are caused by 
cyclical wetting and drying; physical, chemical and biological processes; and cultivation 
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practices. Assouline assumes the fragmentation process to be uniform and random, and the 
probability of particle fragmentation to be proportional to its volume. This leads to a probability 
distribution of soil particles that is asymptotically exponential. The latter is a particular case of 
the Weibull distribution. Assouline and Rouault (1997) and Rouault and Assouline (1998) have 
established a power relationship between particle volume and pore volume. It implies that pore 
volume distribution is described by the general Weibull model. Coupling this with the capillary 
law has allowed Assouline et al. (1998) to express the relationship between effective saturation 
and pressure head in terms of pressure head at the wilting point and two empirical parameters, 
which are determined by fitting the function to experimental data. Assouline and Tartakovsky 
extended the approach by deriving a corresponding relationship between relative hydraulic 
conductivity, effective saturation and pressure head. Upon fitting their relative conductivity 
model to data representing various soil types, the authors found that it fits these data better than 
do the widely used models of Brooks and Corey (1964) and van Genuchten (1980). 
 
SUMMARY OF ACCOMPLISHMENTS  
 
The goal of this work was to advance, as far as possible, our ability to render reliable predictions 
of flow in randomly heterogeneous soils under conditions of uncertainty in a computationally 
efficient manner, and to assess the uncertainty of these predictions. We have developed two 
major techniques to accomplish this goal, one based on the Kirchhoff transformation and the 
other on a Gaussian closure approximation. Both techniques presently utilize the finite element 
method to solve two-dimensional steady state unsaturated flow problems with gravity in the 
presence of arbitrary source and boundary terms. We have started working on methods to extend 
these techniques to transient flows in soils having arbitrary constitutive properties.  
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